BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes

نویسندگان

  • Karen C. Cheung
  • Philippe Renaud
  • T. Skotnicki
چکیده

This paper surveys a few of the emerging bioMEMS technologies at EPFL for improved, inexpensive health care. The lab-on-a-chip systems use dielectrophoretic forces to direct cell movement within microfluidic networks and impedance spectroscopy for label-free inflow characterization of living cells. The implantable microelectrodes for neural applications are based on thin-film polymer foils with embedded microelectrodes for both recording and stimulation. Applications for these biomedical microdevices will include stem cell research, cancer cell characterization, drug discovery, treatments for neurological disorders, and neuroprosthetic devices. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensors: surface structures and materials.

Nanotechnology literally means any technology done on a nanoscale that has applications in the real world. Nanotechnology encompasses production and application of physical, chemical and biological systems at scales ranging from individual atoms or molecules to submicrometre dimensions, as well as the integration of the resulting nanostructures into larger systems. Nanotechnology is likely to h...

متن کامل

Protein adsorption on materials for recording sites on implantable microelectrodes.

Implantable microelectrodes have the potential to become part of neural prostheses to restore lost nerve function after nerve damage. The initial adsorption of proteins to materials for implantable microelectrodes is an important factor in determining the longevity and stability of the implant. Once an implant is in the body, protein adsorption takes place almost instantly before the cells reac...

متن کامل

Chitosan: an integrative biomaterial for lab-on-a-chip devices.

Chitosan is a naturally derived polymer with applications in a variety of industrial and biomedical fields. Recently, it has emerged as a promising material for biological functionalization of microelectromechanical systems (bioMEMS). Due to its unique chemical properties and film forming ability, chitosan serves as a matrix for the assembly of biomolecules, cells, nanoparticles, and other subs...

متن کامل

BioMEMS for control of the Stem cell Microenvironment

The stem cell microenvironment is influenced by several factors including cell-media, cell-cell, and cell-matrix interactions. Although conventional cell-culture techniques have been successful, they offer poor control of the cellular microenvironment. To enhance traditional techniques, we have designed a microscale system to perform parallel cell culture on a chip while controlling the microen...

متن کامل

BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006